Success Case Factsheet

Ebroacero S.A. steel industry

Key information
 Several environmental

actions and measurements undertaken by Ebroacero

CompanyS.A.
Founded: 1963

Located: Zaragoza, Spain
Products used in: cement plants, renewable energy plants, to siderurgical plants

Target: Reduce CO_{2} emissions. by 46,81 ton/year Current emissions at Ebroacero: 936,18 tCO2eq

Renewable technology implementation \& The company's decarbonisation activities

* Main action in 2021: Agreement with Solarfarm for the installation of PV solar cells. First project target: establish $186,84 \mathrm{Wp}$ for renewable electricity self-consumption.
* Power production: ~207.254 kWh/year, 4-5\% of overall power consumption
* CO_{2} emissions avoidance: 46,81 ton $\mathrm{CO}_{2} \mathrm{eq}$
* PV technology: LONGi solar Hi-MO 5, featuring frontal power of 540W via two-fold glass cells

* Project economics

- Investment: 150.000€
- Return of investment: 6years

Challenges

- The factory's large age

- Substitution of uralite walls is limiting a successful demo

Company's activity carbon footprint by ECODES

```
                    3 scopes (GHG emissions) were assessed :
I. due to Natural gas and other fossil fuels;
II. due to Electricity use of the different facilities;
III.GHG emissions allocated under water, paper consumptions, waste production, journeys, mobility
and diets of staff.
\begin{tabular}{|l|l|}
\hline Scope & \begin{tabular}{l} 
Ton \\
CO \(_{2 \text {-ed }}\)
\end{tabular} \\
\hline I & \(1.434,50\) \\
\hline II & 936,18 \\
\hline III & 209,51 \\
\hline Sum & \(2.580,19\) \\
\hline
\end{tabular}
Build a solar farm on a nearby available area located in the same industrial park, where Ebroacero facilities are located. The new solar farm might have a projected power of about 930 kWp generating up to 1,270,000 kWh/year for self-consumption Additional installation of PV cells on the available plant roof that might produce up to 890.53 kWp .
Electrical energy production: ~ 1,215 MWh.
Main challenge: The adaptation of the roofs prior to the installation of the plates would entail a high cost.
```

